Czy kompetencja arytmetyczna jest uwarunkowana kulturowo?

Wojciech Krysztofiak

Abstract


The purpose of this essay is not to answer the question posed in the title, but to specify the ''preconditions'' for the defense of two opposing stances: mathematical culturalism and mathematical anticulturalism. The names of these stances are not present in the source literature. Introducing them to the debate on the nature of the relationship between expert mathematical knowledge and its folk counterpart is justified, because the dispute concerns i.a. the cultural status of mathematical discourse - especially due to the fact that the acceptance of one of the stances results in rejecting various models of teaching arithmetic in school, considering them incompatible with the stance taken in the dispute. The presented essay does not, however, focus on the strategies, methods, or transfer & teaching techniques concerning mathematics in public education systems.

Keywords


numeracy, culturalism in mathematics, anti-culturalism in mathematics, cognitive science

References


Ashcraft, M. H.: 1992, Cognitive arithmetic: A review of data and theory, Cognition 44, 75–106.

Barwise, J., Perry, J.: 1981, Semantic Innocence and Uncompromising Situations, Midwest Studies in Philosophy 6, 387–403.

Barwise, J., Perry, J.: 1983, Situations and Attitudes, The MIT Press: Cambridge, Mass.: London.

Berch, D. B.: 2005, Making Sense of Number Sense: Implications for Children With Mathematical Disabilities, Journal of Learning Disabilities 38(4), 333–339.

Bernstein, B.: 1990, Odtwarzanie kultury, (tłum. Z. Bokszanski, A. Piotrowski), Panstwowy Instytut Wydawniczy, Warszawa.

Błaszczyk, P.: 2007, Analiza filozoficzna rozprawy Richarda Dedekinda „Stetigkeit und irrationale Zahlen”, Wydawnictwo Naukowe Akademii Pedagogicznej w Krakowie, Kraków.

Cotton, T., T., H.: 2004, Problematic Culture and Dioscourse for Mathematics Education Research, w: P. Valero, R. Zevenbergen (red.), Researching the socio-political dimensions of mathematics education: Issues of power in theory and methodology, Kluwer Academic Publishers, Dordrecht, 85–103.

Dehaene, S.: 2001, Precis of The Number Sense, Mind & Language 16(1), 16–36.

Dehaene, S., Bossini, S., Giraux, P.: 1993, The Mental Representation of Parity and Number Magnitude, Journal of Experimental Psychology: General 122(3), 371–396.

Frank, M. C., Barner, D.: 2012, Representing Exact Number Visually Using Mental Abacus, Journal of Experimental Psychology: General 141(1), 134–149.

Galton, F.: 1880, Visualised numerals, Nature 21, 252–256.

Giaquinto, M.: 2001, Knowing Numbers, The Journal of Philosophy 98(1), 5–18.

Harman, G.: 1974, Identifying Numbers, Analysis 35(1), 12.

Heller, M.: 2006, Czy swiat jest matematyczny?, w: M. Heller (red.), Filozofia i wszechswiat, Universitas, Kraków, 48–57.

Heller, M.: 2010, Co to znaczy, ze przyroda jest matematyczna?, w: M. Heller, J. Zycinski (red.), Matematycznosc przyrody, Petrus, Kraków, 7–18.

Hohol, M.: 2011, Matematycznosc ucielesniona, w: B. Brozek, J. Maczka, W. P. Grygiel, M. Hohol (red.), Oblicza racjonalnosci: wokół mysli Michała Hellera, Copernicus Center Press, Kraków, 143–166.

Ifrah, G.: 2006, Historia powszechna cyfr, t.1, Wydawnictwo W.A.B, Warszawa.

Jarmoc, M.: 2017, Wykorzystanie niestandardowych struktur arytmetycznych w modelowaniu kognitywistycznym myslenia numerycznego, Rocznik Kognitywistyczny 10, 1–14.

Krysztofiak, W.: 2011, Fakty matematyczne w swietle logiki niefregowskiej, Filozofia Nauki 19(76), 83–101.

Krysztofiak, W.: 2012a, Logiczna składnia liczebnika. Studium kognitywistyczne. Czesc I, Filozofia Nauki 20(77), 59–91.

Krysztofiak, W.: 2012b, Indexed Natural Numbers in Mind: A Formal Model of the Basic Mature Number Competence, Axiomathes 22, 433–456.

Krysztofiak, W.: 2014, Do We Need Mathematical Facts?, History and Philosophy of Logic 31(1), 76–107.

Krysztofiak, W.: 2015a, Logiczna skladnia liczebnika. Czesc II: Formatowanie i przetwarzanie liczebnikowych struktur głebokich, Filozofia nauki 23(91), 21–55.

Krysztofiak, W.: 2015b, Hyper-Slingshot. Is Fact-Arithmetic Possible? , Foundations of Science 20, 59–76.

Krysztofiak, W.: 2016a, Representational Structures of Arithmetical Thinking: Part I, Axiomathes 26, 1–40.

Krysztofiak, W.: 2016b, Algebraic Models of Number Axes: Part II, Axiomathes 26, 123–155.

Lakoff, G., Núñez, R. E.: 2000, Where Mathematics Comes From. How the Embodied Mind Brings Mathematics into Being, Basic Books, New York.

Murawski, R.: 1995, Filozofia matematyki. Zarys dziejów, PWN, Warszawa.

Núñez, R. E.: 2000, Mathematical Idea Analysis: What Embodied Cognitive Science Can Say about the Human Nature of Mathematics, Proceedings of the Conference of the International Group for the Psychology of Mathematics Education (PME)(24th, Hiroshima, Japan, July 23-27, 2000), U.S. Department of Education: The Educational Resources Information Center.

Núñez, R. E.: 2011, No Innate Number Line in the Human Brain, Journal of Cross-Cultural Psychology 42, 651–668.

Nuerk, H. C., Wood, G., Willmes, K.: 2005, The universal SNARC effect. The association between number magnitude and space is amodal, Experimental Psychology 52, 187–194.

Patro, K., Haman, M.: 2012, The spatial-numerical congruity effect in preschoolers, Journal of Experimental Child Psychology 111, 534–542.

Patro, K., Krysztofiak, W.: 2013, Umysłowe osie liczbowe. Efekt SNARC. Aspekty filozoficzne, Filozofia Nauki 21(83), 45–98.

Pogonowski, J.: 2011, Geneza matematyki wedle kognitywistów, Investigationes Linguisticae 23, 106–147.

Pogonowski, J.: 2016, Kontekst przekazu w matematyce, Annales Universitatis Paedagogicae Cracoviensis Studia ad Didacticam Mathematicae Pertinentia 8, 119–137.

Pogonowski, J.: 2017, On Conceptual Metaphors in Mathematics, Annales Universitatis Paedagogicae Cracoviensis Studia ad Didacticam Mathematicae Pertinentia 9, 85–98.

Roggeman, C., Verguts, T., Fias, W.: 2007, Priming reveals differential coding of symbolic and nonsymbolic quantities, Cognition 105, 380–394.

Rozko, M.: 2015, Dwa modele reprezentacji liczb. Umysłowa os liczbowa oraz umysłowa wiazka osi liczbowych, Filozofia Nauki 23(90), 107–122.

Shelah, S.: 1990, Classification Theory and The Number of Non-isomorphic Models, (revisited edition), Elsevier Science Publishers B. V., Amsterdam.

Tlauka, M.: 2002, The processing of numbers in choice-reaction tasks, Australian Journal of Psychology 54, 94–98.

Wójtowicz, K.: 2003, Spór o istnienie w matematyce, Wydawnictwo Naukowe Semper, Warszawa.

Zebian, S.: 2005, Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and the REVERSE SNARC effect in English and Arabic Monoliterates, Biliterates, and Illiterate Arabic Speakers, Journal of Cognition and Culture 5, 165–190.


Full Text: PDF (Polski)

e-ISSN: 2450-341X, ISSN: 2080-9751


AUPC SDMP is on the List of the Ministry’s scored journals (part B) with 5 points for 2016