Kontekst Przekazu w Matematyce
Abstract
Keywords
References
Ajdukiewicz, K.: 1975, Logika pragmatyczna, PWN, Warszawa.
Ben-Zeev, T., Star, J.: 2001, Intuitive Mathematics: Theoretical and Educational Implications, in: B. Torff, R. J. Sternberg (ed.), Understanding and Teaching the Intuitive Mind: Student and Teacher Learning, Lawrence Erlbaum Associates Publishers, Mahwah, New Jersey, London, 29–56.
Davis, P. J., Hersh, R.: 1994, Swiat Matematyki, PWN, Warszawa.
Fischbein, E.: 1987, Intuition in Science and Mathematics: an educational approach, Kluwer Academic Publishers, New York / Boston / Dordrecht / London / Moscow.
Fraenkel, A. A., Bar-Hillel, Y., Levy, A.: 1973, Foundations of set theory, North-Holland Publishing Company, Amsterdam, London.
Galperin, G.: 2003, Playing Pool with (The Number from a Billiard Point of View), Regular and Chaotic Dynamics 8(4), 375–394.
Ghrist, R.: 2014, Elementary Applied Topology, Createspace.
Good, I. J., Churchhouse, R. F.: 1968, The Riemann hypothesis and pseudorandom features of the Möbius sequence, Mathematics of Computation 22, 857–861.
Havil, J.: 2007, Nonplussed! Mathematical Proof of Implausible Ideas, Princeton University Press, Princeton and Oxford.
Havil, J.: 2008, Impossible? Surprising Solutions to Counterintuitive Conundrums, Princeton University Press, Princeton and Oxford.
Heath, T. L.: 2002, The Works of Archimedes, Dover Publications, Inc., Mineola, New York.
Klymchuk, M., Staples, S.: 2013, Paradoxes and Sophisms in Calculus, Mathematical Association of America, Washington, DC.
Lakoff, G., Johnson, M.: 1980, Metaphors we live by, University of Chicago Press, Chicago.
Lakoff, G., Núñez, R.: 2000, Where Mathematics Comes From. How the Embodied Mind Brings Mathematics into Being, Basic Books, New York.
Lange, M.: 2014, Depth and Explanation in Mathematics, Philosophia Mathematica 23(2), 196–214.
Laraudogoitia, J. P.: 1996, A Beautiful Supertask, Mind 105, 81–83.
Lénárt, I.: 1996, Non - Euclidean Adventures on the Lénárt Sphere, Key Curriculum Press, USA.
Levi, M.: 2009, The Mathematical Mechanic. Using Physical Reasoning to Solve Problems, Princeton University Press, Princeton and Oxford.
Mancosu, P.: 2015, Explanation in mathematics, in: E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Summer 2015 edn, Metaphysics Research Lab, Stanford
University. https://plato.stanford.edu/archives/sum2015/entries/mathematics-explanation/.
Needham, T.: 1997, Visual complex analysis, Clarendon Press, Oxford.
Pogonowski, J.: 2011, Geneza matematyki wedle kognitywistów, Investigationes Linguisticae XXXIII, 106–147.
Pogonowski, J.: 2012, Matematyczne metafory kognitywistów, Tekst odczytu wygłoszonego podczas LVIII Konferencji Historii Logiki, Uniwersytet Jagiellonski, Kraków, 23–24 pazdziernika 2012. http://www.logic.amu.edu.pl/images/0/0e/Mmk2012.pdf.
Pogonowski, J.: 2013, Matematyczne fantazje kognitywistów, w: J. Juchnowski, R. Wiszniowski (red.), Współczesna teoria i praktyka badan społecznych i humanistycznych,
Vol. 2, Wydawnictwo Adam Marszałek, Torun, 117–127.
Polya, G.: 2009, Mathematical Discovery on Understanding, Learning, and Teaching Problem Solving, Ishi Press International, New York, Tokyo.
Polya, G.: 2014, Mathematics and Plausible Reasoning. Vol. I: Induction and Analogy in Mathematics, Vol. II: Patterns of Plausible Inference, Martino Publishing, Mansfield Centre, CT.
Romero, G. E.: 2014, The collapse of supertasks, Foundation of science 19(2), 209–216.
Schoenfeld, A. H.: 1985, Mathematical Problem Solving, Academic Press Inc., Orlando.
Sierpinska, A.: 1994, Understanding in Mathematics, The Falmer Press, London.
Steiner, M.: 1978, Mathematical Explanation, Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition 34(2), 135–151.
Tall, D.: 2013, How Humans Learn to Think Mathematically. Exploring the Three Worlds of Mathematics, Cambridge University Press, Cambridge.
e-ISSN: 2450-341X, ISSN: 2080-9751
AUPC SDMP is on the List of the Ministry’s scored journals (part B) with 5 points for 2016